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Mode Theoty of Lossless Periodically Distributed

Parametric Ampliﬁers*
K. KUROKAWAT anp J. HAMASAKI?

Summary—In this paper, an operator 79 is introduced for the
analysis of the periodically distributed parametric amplifier. The
operator is the product of a diagonal matrix expressing the pumping
phase relation and the T matrix of the basic section of the amplifier.
The eigenvectors of 70 are called the ‘‘modes” of the amplifier.
The orthogonality properties of the modes are proved in a similar
way as for the conventional mode theory. Finally, an expression is
derived for the power gain of the amplifier as an application of the
theory.

I. INTRODUCTION

ONSIDERABLE attention has been given re-
C cently to the parametric amplifier mainly because

of the possibility of low-noise characteristics.
The limitation of bandwidth® has been removed by the
proposal of the traveling wave parametric amplifier;
this proposal has been made by Miyakawa? and by Tien
and Suhl® independently. The loss of available ferrites,
however, requires a large amount of pumping power
for the traveling wave ferromagnetic amplifier. In this
regard, the traveling wave parametric amplifier with
semiconductor diodes, as the active elements periodi-
cally loaded in the transmission line is more promising.
As a matter of fact, some successful results already have
been reported.* The term “periodically distributed para-
metric amplifier” will be used in this paper for the am-
plifier of this type to distinguish it from the one with
uniformly distributed variable reactances. The theo-
retical study of the periodically distributed parametric
amplifier was first undertaken by Saito. It is shown that
the growing and decreasing waves can propagate in the
lossless transmission line periodically loaded with the
variable capacitors, of which the invariant parts are
effectively cancelled out. These growing and decreasing
waves are, naturally, very similar to those of the travel-
ing wave amplifier discussed by Miyakawa, Tien, and
Suhl. The extension of Saito's work leads to the eigen-
value problem of an operator 79, the product of a di-
agonal matrix expressing the pumping phase relation,
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and the T matrix of the basic section of the amplifier.
The eigenvectors of the operator 76 may be called the
modes of the periodically distributed amplifier. Presen-
tation of the theory of these modes is the aim of this
paper. The orthogonality relations between the modes
are proved in a similar way as for the conventional mode
theory.? Finally, the first approximation of the gain of
the amplifier is derived as an application of the theory.

II. INTRODUCTION OF THE OPERATOR 10

For the sake of simplicity, we shall consider the loss-
less two terminal pair networks with a variable capac-
itor as illustrated in Fig. 1. Fig. 1 (a) and (b) are iden-
tical two-terminal pair networks. The invariant part of
the variable capacitor is divided into two parts, each of
which is included in (a) and (b). Z, is the image imped-
ance of (a) or (b) looking into the outside terminal, and
Zy' is the impedance looking into the inside terminal.
(The prime notation indicates the value of the inside
terminals.) In this section we shall indicate whether a
quantity refers to the angular frequency w; or ws by the
last subscript 1 or 2, respectively. We often omit this
last subscript if the equation holds for both frequencies.

Fig. 1—Basic section of the amplifier.

The voltage and current at each terminal in Fig. 1
are, in terms of the incident waves (subscript 2) and the
reflected waves (subscript 7),

Va = VZ(a; + ar)
1 1 .
I.=—=(;—a) I,),=—=(ae — g (1)

\/ 0 '\/Z()/
Vy = ~/Zo (b; + b,) = V/Z (bie’® + b,ei)

= VZ/(a:e7" 4 a,e”')

1
Iy=—=(;—b) I =

V7 vz et e @)

5 H. A. Haus, “Coupling of modes of propagation,” M.I.T. Rep.
(unpublished).
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Since the voltages at the ¢-terminals must be equal,

361

Similarly, all the 8’s can be expressed in terms of the a’s.
The result is, in the matrix form,

V. = V.
’ B=TA4 (9)
where
( Tl T Tl Tl
i 2161 0 {_.]‘wlc _ﬁ—__\/ oL #02 pi(02—61) —-jwlc \/ZOI ,qz_. e—i01+02)
|
l 7 7 TE N
N PRELT } jwlC W\/Zm Zox 67(61+02)’ jwlC \/Zm 110—2__ gi(01—02)
!
A T S e e
N Zo' Lod'* N Zol Zog™* |I
ngc* S 61(02~01)7 ]wz(}* - i ei(GrH)z) | p2102 0
|
J— — |
IZ 7% Z IZ [£3
— jesac¥ me-mwez), — jeonc* Vol Lot e:’(erez); 0 2102
!
a41 biy
a: b
4 =110 B = 511; . (10)
a2 2
a0 ) byo*
For wy, the above equation becomes The vector 4 expresses the waves at the input and the
Gine 0 - 0% = boyei® 4 b 3) vector B at the output of the basic circuit. The circuit
“° i “ ne o in Fig. 1 is represented by the square matrix T, which
The equation of continuity is transforms 4 into B.
I =17 41 (1) Next we shall consider the # similar circuits connected
a = 1p ¢

where I, is the current through C. I, is related to the
voltage across C. If the pumping angular frequency w,
is equal to the sum of w; and ws, that is, if

[OF} + wWe = Wp, (5)

the relation is®

2| (Vs
<V2*> (6)

where the asterisk denotes the complex conjugate. Using
(1), (2), (3), and (6), we rewrite (4) in the form

—jwe — 0
]22

c
ane " — a6 — jo, £y VZu'Zw™*(as*e™® + a,5%e71%)

= bse’ — bue (7)
From (3) and (7), we have

bin = ane %

C e 3
— jwi Z NV Zo' Zox (@i e’ A apgTe Oty (8)

6§ H, E. Rowe, “Some general properties of nonlinear elements.
II. Small signal theory,” Proc. IRE, vol. 46, pp. 850-860; May,
1958,

in cascade. The variable capacitor of each circuit has the
pumping phase lagged by 26, from that of the preceding
one. These circuits are represented by the similar mat-
rices to T, but they have ce=2?2, cg=0r . . . ce=2(n—1sp
in place of ¢.

For the analysis of the cascade connections of the
same circuits, it is well known that the solutions of the
eigenvalue problem of T are of great help: the circuits
as a whole transform each eigenvector to the same eigen-
vector multiplied by (the eigenvalue)?. The circuits
under consideration are, however, different from each
other, and the solutions of the eigenvalue problem of T'
are of no advantages at all.

Here we assume that T transforms the w; components
@ and the w, components a; of 4 to via; and ., re-
spectively, where y; and «; are scalers.

If we write T in the form

ty tem
T = <—~1~—I——~1—>, (11
C*mgl te
(9) becomes
b i1 | om a Y11
(-G -( w
by* ctma| iy as* vo*a*

The operator of the second section is

( 4 [ 06‘2701’71’51)
________ | ————— .
c*e20rmg | ta
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From (12), we have

b e 2%y a Y181
Hence, if we assume the relevance
v2* = 6%, (14)
the output of the second section becomes
i ( ce~210mp, i1 | emy a1
<2;e219pm2 T ><Z%}_?§ _> (7{5>
fr 1eeHmy N [ vian vi’e
N <;;e2"”"7nz {_ t2 )(‘yz*az*> N (;;":{a_z;) ()

Similarly, the output of the nth section is
lce—z(n—l)jﬁpm1>

51
- |
C*GZ(n—l)Jﬂpm2 ! t2

< fH | 66_2j9P7I’L1 i emg ai
\ 5| ! o
6*62701’7’}’52 | ts C*le {2 as*

Y101
= . (16
(’)/2*”@*) (16)

This is a very simple relation. Thus we have shown that
the solutions of (12) may play an important part in our
analysis.

If we put

(17)

then (14) is satisfied. We now rewrite (12) in the form

yi= N, yy* = hei,

(T —Np)Ad =0 (18)
where
[e""l’ 0 0 0 \I
I = [0 e 0 0 l (19)
0 0 e’ 0
0 0 0 ef"PJ

The vector 4 satisfying (18) is transformed into A*Iy"4
by the transformation of the left hand side of (16). Mul-
tiplying (18) by Is~! from the left, we obtain

(Te —ADA =0 (20)
where I is the unit matrix and
To = To_1T=Ia*T. (21)

Eq. (20) has just the conventional form of the eigen-
value problems. As is well known, there are four inde-
pendent eigenvectors (m eigenvectors in case of m di-
mensional space) and an arbitrary vector can be ex-
pressed as a linear combination of them. Each eigen-
vector A, is independently transformed by the ampli-
fier into NIy A, where A}, is the eigenvalue of the eigen-
vector A;. For this reason, the eigenvectors of Ty may
be called the modes of the periodically distributed para-
metric amplifier.
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I1I. TaE ORTHOGONALITY PROPERTIES
OF THE MODES

The eigenvectors of Ty have certain properties of or-
thogonality which are important when we wish to ex-
press a vector as the sum of the eigenvectors. The or-
thogonality theorems take, of course, different forms
from the conventional circuits. The theorems hold in a
more general case than the particular amplifier dis-
cussed in Section 1I. We shall prove them in the general
case, using one of the Manley-Rowe relations.”

For the lossless parametric circuit with w, satisfying
(5), the Manley-Rowe relation is

w w
A (22)

w1 W2

where Wy and W, represent the real powers flowing into
the circuit at the angular frequencies w; and ws, re-
spectively.

If w; and ws are both in the pass-band of the two-
terminal pair network, using (1) and (2), from (22) we
obtain

1 1
— Re (Val al* - Vb1]b1*) — — Re (VaZIaZ* - VbzIbZ*)

w1 w2

1
=~ (eal* = [onl* = [oul? + [3a]9

= sl [ 5e])

1
- —(l dw’z - ’ aro
w2
= 47074 — BYQ'B
= AHQ 1 — T4 = 0 (23)

where the symbol * denotes the coriplex conjugate
transposed matrix and

1
— 0 0 0
w1
1
0 —— 0 0
Q! = “
1
0 0 —— 0
w2
1
0 0 0 —
w2 (24)

Since (23) must hold for every 4,

Q1 = T, (25)
This is the condition which T of all the parametric cir-
cuits should satisfy. (See Appendix, Section A.)

7J. M. Manley and H. E. Rowe, “Some general properties of
nonlinear elements—part 1. General energy relations,” Proc. IRE,
vol. 44, pp. 904-913; July, 1956.
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If two T"s, T, and T, satisfy (25), then

(TuTb)+Q_'1(TaTb)

= Tt T T,y = Tyt 1Ty = Q7L (26)

Eq. (26) shows that the product of two T’s, (T,T%),

again satisfies (25). It is worth noting that the unit

matrices I and T of the conventional circuits also satisfy

(25). Since Iy~! satisfies (25), Ty also satisfies (25):

Q1= To+QM1T9. (27)

If A is an eigenvalue of Ty, the determinant of
(To—NeI) vanishes:

det (Ty — M) = 0. (28)

Taking the complex conjugate transpose of (28), we

have

det (Tg"' —_ Ak*l) = (.
Since det (T9) #0, M\;520. From these relations, we have
det (Te+ — MFID) det (Q_ITG)
= det (To’*'Q_lTo - )\k*Q‘ng)
= det (! — N*Q1T)
1
= det (Q—D\k*) det ()\—;' I — To) = (),

k

The final result is

1
det (Te—— [) = 0.
A

It says, if A is an eigenvalue then 1/M\;* is also an eigen-

value of Ty. In other words, when [)\k[ #1, the eigen-

values Ny and 1/N* appear always in pairs. When

[)\k[ =1, 1/A* is equal to N, and the result is trivial.
I{\rand \; are the two eigenvalues of T,

TgAk = }\kAk.
TaAl = )\1/11.

(29)

(30)
31)

From (31), we have

1 1
}\—* (T3A1)+ = F AZ+T9+ = Al+.
1

I

Multiplying by Q'TA4; from the right and using (27),
we have

1
—‘: A["Q’—IAIC = A["Q‘“lToAk.
i

Multiplying (30) by A,7Q7! from the left and substitut-
ing in the above equation, we obtain

1
<)\k — )\—l*> AZ+Q—1 Ak = (). (32)
If A= 1/N*, from (32), we have
Az+Q"1Ak = 0, (33)

In case | x| %1, since Ni=1/A\:*, we can set =k in (33);
that is,

At 4, =0 (| ] = 1), (34)

Next, we expand Q4 in terms of the modes in the
form

Q4 = Z ajd ;.

j
Multiplying by A;*Q from the left, we have
A;{"Ak = Z ajAk”"ﬂ‘lAj # (),

7

(35)

Assuming that N\ is not degenerate and using (33), when
|\:| =1, we obtain

A4, %0 (| a] = 1).

If ])\kl #1, there is always the eigenvector 4, corre-
sponding to the eigenvalue 1/M*. In this case, (35) be-
comes

(36)

A 14, 0
which can be rewritten in the form
AFQ4, #£ 0. 37)
Here, we define 4, by
Adv= A M| =1 (38)
Ay = A i [ M =1 (39)

where A, is the eigenvector corresponding to the eigen-
value 1/X* Then, (33), (34), (36), and (37) become

A 04, =0 (I#E)

A4, = 0. (40)

These are the orthogonality theorems which we wished
to prove.

In the case of degeneracy, the above proof does not
necessarily hold. It is, however, always possible to in-
troduce the eigenvectors in such a way as to secure the
orthogonality, and we are justified in assuming (40) even
in case of degeneracy. (See Appendix, Section B.)

IV. PowER GAIN OF THE AMPLIFIER

In this section, we shall derive an expression for the
power gain of the periodically distributed parametric
amplifier.

We need the solutions of the eigenvalue problem
(20). In the preceding sections, we have imposed no
conditions on 8,. Here we shall confine ourselves to the
case of synchronous pumping:

ep = 01 “I— 02. (41)

All the eigenvalues and the corresponding eigenvec-
tors can be obtained by the standard method of algebra,
or by the method of perturbation. To the first order of
approximation, they are
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If w; and w; are in the pass-band, as we have assumed,
8 is real and we have M =1/A* which we proved in
Section III. 4; and A; represent the growing and de-
creasing waves, for l)\ll is greater than unity and |)\3’
is smaller than unity. It is worth noting that they are
almost the incident waves. 4. and 4, are the reflected
waves, of which the propagation constants do not
change in this approximation. The orthogonality
theorems (40) are satisfied to the same order of approxi-
mation.

For the calculation of the power gain, we first express
the input vector 4 as the sum of the eigenvectors in the
form

A =2, a4y (44)

Ay is transformed into M"[s"4p by the amplifier.
Hence, for the output vector B, we have

B = Z T P P

k

(45)

Multiplying by A:Q~*Iy— from the left, because of the
orthogonality properties of the modes, we obtain

f-[kQ'"lIg_”B = ak)\k"ng‘“lAk,
Therefore
AT B

= 46

o a4y (46)
For simplicity, we assume that the output is terminated
with Zy: by=0."=0. Then, from (42), (44), and (46),
we have

1 1 })
I+~ A—-9r

w1

w2

B biz*e—f(n—l)ep {
el

the order of §
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A= (1 _[_. 5)6:1'(02—01)
1 ]
0
J 2 sin 201
A]_ = JE—
w2 C*
jp) e
wi | CI
/‘/;2 c* demify
w1 'Cl 25in202
Ao = o7 (801+62)
0
1
y /‘/w_g c*  Seitr
2 wllc[flsin%l
/‘/w—z c*  beifp
wr |¢| 2sin 29,
Az = (1 — §)ef0s—00
1
. b
79 sin 26,
Ag = ——0)2 C* .
—_ ] /‘/_ — g i0p
(O3} l C[
sz c*  deify
w1 |c] 2 sin 26,

1 (b ) { 1 n 1 } .
N ) 877! » N
Dgin(oio2 \ "' A48 (1—an J

A= _ )
. we c* k] R 1 1
g — e <b116]n0p{ —
wr || 2e7mee A+8 (11—
)\4 = g~ 7{01+302)
w1 ¢ de?fr
wa [ ’ 2 sin 202
Ay = 1/ o o _beb (42)
! wzlc’ 2 sin 26,
0
1
where
N T T
8 = ez | ¢ %"2— : (43)

)

(47)

e iy { L
(1+a)r

CJaT e
b=y
wa IC[

We further assume that the input is also terminated
with Zg at ws:

Vz - - Zoz[g‘
This means
A = 0. (-}S)
From (47) and (48), we have
1 1

bilemﬂp{ . }

d+o (=98
= ]/‘/E < biz*e_’("—l)e"{ ! + ! } . (49)

ws | el (L8 (1—d)"
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Substituting in a4 in (47), we obtain

a,1 =

1 2
—_— . bz infp , 50
g in(01—02) 1€ {(1 _.,_ 5)n + (1 — 5)n} ( )

The power gain is the ratio of the output power ]b,-1| 2
to the input power aﬂ[ 2. Thus we find

_ lal? {(1+a)n+(1—a)n

N 2

G

2
} = cosh?nd. (31)%

We took |a@a|? as the input power instead of |an|?
~ | @] 2 The reason for this choice is that the net input
power |a@a|?—|aq]? may become negative because,
from (47), a. is of the order of 6 and a.; becomes of the
order of 6 if G is of the order of 1/682. In this case a cir-
culator can be employed to secure the stability.

APPENDIX
A. The Form of &1
In case wyis in the stop-band (Zy is pure imaginary)

while wi remains in the pass-band, the same manipula-
tion as (23) leads to

1
— 0 0 0
w1
1
0 —— 0 0
w1
Ot = ) (52)
0 0 0 +£5—
[OF]
1
0 0 F5— 0
we

where the upper signs in the matrix refer to the in-
ductive Zg» and the lower signs to the capacitive Zg..
With this Q71 in place of (24), the orthogonality theo-
rems can be proved without alteration.

B. The Orthogonality in the Case of Degeneracy

We shall consider the case of double degeneracy. Let
Ay and A4 be the independent degenerate eigenvectors
with |\i] 1. Because of the degeneracy, we have

d
—det (Ty — A\I) = 0. 53
o de (Ty — M) (53)
In a similar way as for (29), we obtain
1
det <Te - I) =( (54)

1 1
N
8 Eq. (41) requires transmission lines without a cutoff effect.
The effect of cutoff would be

0, =< + 9+ A9,

In this case, (51) becomes

. AG\?
G = cosh? nd - (5) sinh? #8’, where & = /52 — (A9)%

365

proving that 1/M* is also two fold. We denote the two
independent eigenvectors corresponding to the eigen-
value 1/A* by 4_; and 4_,. In terms of the modes,
QA4 and Q4;are

QA1 = Y aedy
k
QAdy = Y Brds. (55)
k
If we put
Aa = A1 4 ad,
Ay = A1 - aAg, (56)

then, using (33) and (55), we have
0 A 4, = A (41 + edy)
= AU oy A 1+ asd o+ aBf A1+ aBsA2)
0# 45tdy = Ast(4: — ad)
= A0 e A+ aed s — a1 A1 — af_gAd ).
Hence, if we define 4_, and 4.3 by
Ao=a A3+ asd s+ aB_1d_1 + aB-24_,
Ay = agd 1+ asd s — af_1Ad—y — o245, (57)

the above equations become

AF 1A, # 0  AgFQtA_y %0, (58)
In order to obtain the relations
AU 1Ay = AT 41— ad P A, + a* AT A,
—~ | a|24s+4: =0
Ayt o = AFd1+ e A4, — oA Ay
— |a|t4st4, = (59)
we need only to put
lal :Vm, La= —LAFA4,. (60)
Ayt A

Since a#0, A4,, Ay, A_, and 4_; thus defined are inde-
pendent to each other and they satisfy the orthogonal-
ity theorems. In case l)\ll =1, similarly the modes can
be introduced so as to secure the orthogonality. The
generalization of the above discussion to the case of mul-
tiple degeneracy is not difficult.
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