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Mode Theory of Lossless Periodically Distributed

Parametric Amplifiers*
K. KUROKAWA~ AND J. HAMASAKI~

Summary-In this paper, an operator TOis introduced for the

analysis of the periodically distributed parametric amplifier. The

operator is the product of a diagonal matrix expressing the pumping

phase relation and the T matrix of the basic section of the amplifier.

The eigenvectors of 2?3 are called the “modes” of the ampliiier.

The orthogonality properties of the modes are proved in a sirdar
way as for the conventional mode theory. Finally, an expression is
derived for the power gain of the amplhier as an application of the
theory.

1. INTRODUCTION

CONSIDERABLE attention has been given re-

cently to the parametric amplifier mainly because

of the possibility of low-noise characteristics.

The limitation of bandwidth’ has been removed by the

proposal of the traveling wave parametric amplifier;

this proposal has been made by Mi yakawa2 and by Tien

and Suh13 independently. The loss of available ferrites,

however, requires a large amount of pumping power

for the traveling wave ferromagnetic amplifier. In this

regard, the traveling wave parametric amplifier with

semiconductor diodes, as the active elements periodi-

cally loaded in the transmission line is more promising.

As a matter of fact, some successful results already have

been reported.4 The term “periodically distributed para-

metric amplifier” will be used in this paper for the am-

plifier of this type to distinguish it from the one with

uniformly distributed variable reactance. The theo-

retical study of the periodically distributed parametric

amplifier was first undertaken by Saito. It is shown that

the growing and decreasing waves can propagate in the

lossless transmission line periodically loaded with the

variable capacitors, of which the invariant parts are

effectively cancelled out. These growing and decreasing

waves are, naturally, very similar to those of the travel-

ing wave amplifier discussed by Miyakawa, Tien, and

Suhl. The extension of Saito’s work leads to the eigen-

value problem of an operator Tf?, the product of a di-

agonal matrix expressing the pumping phase relation,

* Manuscript received by the PGMTT, February 16, 1959; re-
vised paper received, March 231 1959.
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and the T matrix of the basic section of the amplifier.

The eigenvec tors of the operator TO may be called the

modes of the periodically distributed amplifier. Presen-

tation of the theory of these modes is the aim of this

paper. The orthogonality relations between the modes

are proved in a similar way as for the conventional mode

theory.5 Finally, the first approximation of the gain of

the amplifier is derived as an application of the theory.

II. INTRODUCTION OF THE OPERATOR Tfl

For the sake of simplicity, we shall consider the loss-

Iess two terminal pair networks with a variable capac-

itor as illustrated in Fig. 1. Fig. 1 (a) and (b) are iden-

tical two-terminal pair networks. The invariant part of

the variable capacitor is divided into two parts, each of

which is included in (a) and (b). 20 is the image imped-

ance of (a) or (b) looking into the outside terminal, and

20’ is the impedance looking into the inside terminal.

(The prime notation indicates the value of the inside

terminals.) In this section we shall indicate whether a

quantity refers to the angular frequency U1 or cm by the

last subscript 1 or 2, respective y. We often omit this

last subscript if the equation holds for both frequencies.

Fig. l—Basic section of the amplifier.

The voltage and current at each terminal in Fig. 1

are, in terms of the incident waves (subscript i) and the

reflected waves (subscript r),

V. = #ZO(at + a,) V.’ = {Zo’(aie-io + a,e’d)

V, = I/z (bi + b,) Vb’ = ~Z{(biejg + b,e-ig)

5 H. A. Haus, “Coupling of modes of propagation, ” M.I.T. Rep.
(unpublished).
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Since the voltages at the c-terminals must be equal, Similarly, all the b’s can be expressed in terms of the a’s,

The result is, in the matrix form,

v.’ = ?“b’.
B=TA (9)

where

T = \ ------------------------------------------------ ! ----------: ------_________ :_---__: _____________

B= (10)

For wI, the above equation becomes The vector A expresses the waves at the input and the

The equation of continuity is

1.’ = Ib’ + 1. (4)

where 1. is the current through C. I. is related to the

voltage across C. If the pumping angular frequency WP

is equal to the sum of al and W2, that is, if

@l + @2 = Wp, (5)

the relation isb

where the asterisk denotes the complex conjugate. Using

(1), (2), (3), and (6), we rewrite (4) in the form

c .—
a~le–iel — a,lejol — jIJI — /Zo1’Z02’*(a,2* efd2 + a,2*t@$)

2
= b;lei” – b,le-f”. (’7)

From (3) and (7), we have

—-
— juI + <Zo1’Z02’*(ai2* ef(@2–81)+ ar2*e–f(eI+@Z)). (8)

GH. E. Rowe, “Some general properties of nonlinear elements.
~~5~mall signal theory, ” PROC. IRE, vol. 46, pp. 850-860; May,

vector B at the output of the basic circuit. The circuit

in Fig. 1 is represented by the square matrix T, which

transforms A into B.
Next we shall consider then similar circuits connected

in cascade. The variable capacitor of each circuit has the

pumping phase lagged by 20, from that of the preceding

one. These circuits are represented by the similar mat-

rices to T, but they have ce–Zi@, ce–-~@~, . . . cc–a (n–11]~~

in place of c.

For the analysis of the cascade connections of the

same circuits, it is well known that the solutions of the

eigenvalue problem of T are of great help: the circuits

as a whole transform each eigenvector to the same eigen-

vector multiplied by (the eigenvalue)”. The circuits

under consideration are, however, different from each

other, and the solutions of the eigenvalue problem of T
are of no advantages at all.

Here we assume that T transforms the ml components

al and the cm components az of A to ~lal and TZUZ, re-

spectively, where T1 and 72 are scalers.

If we write Tin the form

‘= (i%?-)
(9) becomes

(11)

The operator of the second section is

(
tq[ce–23@wz1)--------I -------- .

c*e2~Ewn2 I t2
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From (12), we have

Hence, if we assume the relevance

72* = -yle2joP,

the output of the second section becomes

. ( ‘Ce-’i’pmxi%i)=(::::)--”~----I---;; ---
c*e2fevn2 I

Similarly, the output of the tzth section is

(

tl

)

[Ce–z(n–l)io.ml
-------.: ---- I ----------- . . .
~*e2 (n–l)lb’Pw2 I t2

(14)

(15)

This is a very simple relation. Thus we have shown that

the solutions of (12) may play an important part in our

analysis.

If we put

.-yl = ~e–i~p y2* = ~eiop,9 (17)

then (14) is satisfied. We now rewrite (12) in the form

(T– XI,)A = o (18)

where

(

e–len o 0 0)

10 e–ion () 0’
Ie =

00
(19)

@P () “

[0 O 0 e~”.j
The vector A satisfying (18) is transformed into A“lO”A

by the transformation of the left hand side of (16). Mul-

tiplying (18) by 16–1 from the left, we obtain

(T, –AI)A = o (20)

where 1 is the unit matrix and

Tg = TO-IT = Io*T. (21)

Eq. (20) has just the conventional form of the eigen-

value problems. As is well known, there are four inde-

pendent eigenvectors (m eigenvectors in case of m di-

mensional space) and an arbitrary vector can be ex-

pressed as a linear combination of them. Each eigen-

vector A ~ is independent y transformed by the ampli-

fier into hknlOnA k, where hh is the eigenvalue of the eigen-

vector A k. For this reason, the eigenvectors of To may

be called the modes of the periodically distributed para-

metric amplifier.

II 1. THE ORTHOGONALITY PROPERTIES

OF THE MODES

The eigenvectors of Te have certain properties of or-

thogonality which are important when we wish to ex-

press a vector as the sum of the eigenvectors. The or-

thogonality theorems take, of course, different forms

from the conventional circuits. The theorems hold in a

more general case than the particular amplifier dis-

cussed in Section II. We shall prove them in the general

case, using one of the Manley-Rowe relations.7

For the Iossless parametric circuit with co, satisfying

(5), the Manley-Rowe relation is

WI W2—— —. o (22)
@l @2

where W1 and Wz represent the real powers flowing into

the circuit at the angular frequencies U1 and CW, re-

spectively.

If til and UZ are both in the pass-band of the two-

terminal pair network, using (1) and (2), from (22) we

obtain

z -4+&lA _ ~+&lB

= .4+(&1 _ T+&lT)A = O (23)

where the symbol + denotes the cofiplex conjugate

transposed matrix and

1
.

JI

o

io

I
o

00

1
— o

Since (23) must hold for every A,

f2-1 = T+!J-lT.

o

0

(25)

This is the condition which T of all the parametric cir-

cuits shouid satisfy. (See Appendix, Section A.)

7 J. M. Manley and H. E. Rowe, ‘{Some general properties of
nonlinear elements—part 1. General energy relations, ” PROC. IRE,
VOI. 44, pp. 904–913 ; July, 1956.
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If two T’s, T. and Tb, satisfy (25], then

(TaTb)+&’(T.T,)

= Tb+Ta+fFITaTb = Tb+fl-lTb = Q-l. (26)

Eq. (26) shows that the product of two T’s, (T~Tb),

again satisfies (25). It is worth noting that the unit

matrices I and T of the conventional circuits also satisfy

(25). Since 10-’ satisfies (25), To also satisfies (25):

f2-1 = Tg+i2-lTg. (27)

If hk is an eigenvalue of To, the determinant of

(To –XJ) vanishes:

det (To – &~) = O.

Taking the complex conjugate transpose of

have

det (TO+ – ~k*I) = O.

Since det (To) #O, Ak#O. From these relations,

(28)

(28), we

we have

det (T,+ – b*I) det (Q-’T8)

= det (To+!d-lT@ – &* Q-’Td)

= det (Q_l – k~*Q-1T6)

‘det@’’’det(+(+-“)=0
The final result is

‘et(T’-$‘)=0 (29)

It says, if ~k is an eigenvalue then l/h~* is also an eigen-

value of T6. In other words, when \ fik [ #1, the eigen-

values & and l/hk* appear always in pairs. When

[Akl = 1, l/XZ* is equal t.o~k, and the result is trivial.

If h~ and AZ are the two eigenvalues of To,

From (31), we have

Multiplying by Q-1Tw4k from the right and using (27),

we have

Multiplying (30) by A L+Q–l from the left and substitut-

ing in the above equation, we obtain

&-3 A2+”-’Ak=o(32)

If hk#l/hi*, from (32), we have

Al+&lAk = O. (33)

In case ]~~] #l, since hk#l/&*, we can set ~==k in (33);

that is,

Ak+~-1.4k = O (1 A,] #l). (34)

Next, we expand QAk in terms of the modes in the

form

QAk = ~ ~jAj.

Multiplying by Ak+~-l from the left, we have

A~+Ak = ~ ajAk+f2-’A~ # O. (35)

Assuming that &is not degenerate and using (33), when

]~kl =1, we obtain

A~+&lAk # O (l~k] =1). (36)

If ] ~k \ #1, there is always the eigenvector A ~ corre-

sponding to the eigenvalue l/~k*. In this case, (35) be-

comes

Ah+&lAt # O

which can be rewritten in the form

AJ+Q–lA~ # 0. (37)

Here, we define ~~ by

& = Ak+ iflh~] =1 (38)

& = Al+ ifl&\#~ (39)

where A ~ is the eigenvector corresponding to the eigen-

value l/kk*. Then, (33), (34), (36), and (37) become

ii&lA~ = O (1 # k)

&&lAk # O. (40)

These are the orthogonality theorems wlhich we wished

to prove.

In the case of degeneracy, the above proof does not

necessarily hold. It is, however, always possible to in-

troduce the eigenvectors in such a way a.s to secure the

orthogonality, and we are j ustified in assuming (40) even

in case of degeneracy. (See Appendix, Section B.)

IV. POWER GAIN OF THE AiMPI,I~IEIR

In this section, we shall derive an expression for the

power gain of the periodically distributed parametric

amplifier.

We need the solutions of the eigenvalue problem

(20). In the preceding sections, we have imposed no

conditions on OP. Here we shall confine ourselves to the

case of synchronous pumping:

0= = 01 + 02. (41)

All the eigenvalues and the corresponding eigenvec-

tors can be obtained by the standard method of algebra,

or by the method of perturbation. To the first ord~er of

approximation, they are
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A, =

1

If ml and tiz. are in the pass-band, as we have assumed,

8 is real and we have Al= I/At* which we proved in

Section II 1. A 1 and At represent the growing and de-

creasing waves, for \ Al ] is greater than unity and ] & I

is smaller than unity. It is worth noting that they are

almost the incident waves. A a and Al are the reflected

waves, of which the propagation constants do not

change in this approximation, The orthogonality

o

1
1

A, =

I theorems (40) are satisfied to the same order of approxi-

mation.

For the calculation of the power gain, we first express

the input vector A as the sum of the eigenvectors in the

form

‘4~2 # /je-,8P ‘
— Ak k transformed into hhnl,”Ak by

al \cl 2sin201 Hence, for the output vector l?, we have
—

(

CJ2 p &-18P

—

1

B = ~ cZ/&nL?”Ak.

co, Ic[ 2sin20P k

(4’!)

the amplifier.

(45)

because of theMultiplying by ~&ll~-” from the left,

orthogonality properties of the modes, we obtain

I

1
For simplicity, we assume that the output is terminated

with ZO: b,l = b,2* = O. Then, from (42), (44), and (46),

we have

[

1

({

1 1
—

}d

al c

{

1 1
— ~i2*e–i(n–l)e.

2e–jn(*,–*2) b’lefnop
(1 +a)” + (1–8)” ‘i ii [cl (1+8)”– (1 – a)” })

where

the order of 13 J

(47)

We further assume that the input is also terminated

with Z02 at COZ:

This means

(42) a~a = O, (48)

From (47) and (48), we have

{

1 1
bile]no~

(1+ 6)” – (1 – a)” }

—

d {(43) = j ~ ~ biz”e-~(m-’)ep 1 + 1
CO, Icl (1+ 6)” (1 – 6)” }

. (49)
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Substituting in a~l in (4’?), we obtain

1
b%le;nep

{

2
at] =

e–in (f?–@2) )(l+@ ’+(1-6)” “

The power gain is the ratio of the output power

to the input power [ ail 12. Thus we find

~= \b,, \’

{

(1+ 8)” + (1 – 8)” 2 _ ~osh,,,a

] a,,l’ = }

—
2

We took ] a,, ] 2 as the input power instead of

proving that l/~1* is also two fold. We denote the i%TO

independent eigenvectors corresponding to the eigen-

(50) value l/hi* by A-1 and A.-’. In terms of the modes,

QA1 and QAz are

(51)’

If we put

lai,l’

!2.4, = ~ &A~. (55)
k

–[a,l\2. Ther
,,

eason for this choice is that the net input
A. = Al+ ~Az

power [ ail] 2– I a,l ] 2 may become negative because,

from (47), arl is of the order of ~ and a,l becomes of the

order of 6 if G is of the order of 1/82. In this case a cir-

culator can be employed to secure the stability.

APPENDIX

.4. The Form of L1-l

In case 02 is in the stop-band (202 is pure imaginary)

while w remains in the pass-band, the same manipula-

tion as (23) leads to

11
— o 0 0
ml

1
1

0 —— 0 0
6)1

Q–1 = (52)

o 0 0 J
W2I

where the upper signs in the matrix refer to the in-

ductive ZOZ and the lower signs to the capacitive 202.

With this Q-l in place of (24), the orthogonality theo-

rems can be proved without alteration.

B, The OYthogonality in the Case of Degeneracy

We shall consider the case of double degeneracy. Let

A 1 and A‘ be the independent degenerate eigenvectors

with \ Al I # 1. Because of the degeneracy, we have

-& det (To – A1l) = O. (53)

In a similar way as for (29), we obtain

(1f++’)=” ‘“)
d —-

A*l

8 Eq. (41) requires transmission lines without a cutoff effect.
The effect of cutoff would be

.9P=43 + 9,+ AQ.

In this case, (51) becomes

AtJ z

()
G ~ cosh’ n~’ + ~ sinh’ n8’, where ~’ = ~ 32 – (A8)Z,

A~ = Al – aA2,

then, using (33) and (55), we have

(56)

O # Aa+.4. = A.+(A1 + aA2)

= A.+ Q-’(a_lA_~ + CUA-’ + aO-1A.1 -1- up-d .2)

O # .4~+Ab = A~+(.41 – aA’)

= .4 b+Q-’(a_1A_1 + a-’A_z – a~_lA-1 – a/?_d-J.

Hence, if we define A+ and A–b by

A- = a-,A_l + a_’A_z + aLLd-1 -t a@.’A-2

A-b = CX.lA-l + a_.’A-’ – a@-lA_l – a&.2A-,, (.57)

the above equations become

In order to obtain the relations

A.+ Q–lA_b = A1+A1 – aA1+A2 + a* A2+A1

- [ a/’A2+A2 = o

fi6+Q-lA-. = AI+.41 + aA1+A2 – 1Z*A2+A1

- I a]2A’+A2 = O (59)

we need only to put

+’”A1+A1
la]= ————

A,+AZ ‘
Z a = – Z A,-’A’. (60)

Since a #O, Aa, Ab, A_a and A_b thus defined are inde-

pendent to each other and they satisfy the orthogonal-

ity theorems. In case I Ill = 1, similarly the modes can

be introduced so as to secure the orthogonality. The

generalization of the above discussion to the case of mul-

tiple degeneracy is not difficult.
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